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Abstract

A three dimensional finite - element formula-
tion is proposed for finding directly the electric
or magnetic field at a given frequency of excita-
tion inside a general multiaxial finline disconti-
nuity.

It is shown that this formulation can be used
to find the scattering parameters of a general fin-
line bend discontinuity problem. Results are pre-
sented for a case study of a finline step disconti-
nuity problem.

Introduction

Theoretical investigations published so far
for finline discontinuities deal with the step-
discontinuity [1, 2], the inductive strip in finli-
ne [3] and the tapering [4]. In all these cases,
the discontinuity results from the breaking down of
the invariance of the waveguide ports during a spa-
ce translation but the resulting ports of the elec-
tromagnetic system stay always uniaxial. But, to
our knowledge, no attempt has been made to analyze
mutiaxial finline discontinuities like the T junc-
tion and the general bend shown in Fig. 1.

The field theoretical solution of such discon-
tinuities can find important applications in the
precise analytical description of many passive cir-
cuit elements realized in finline technology like
stubs, couplers [5], mixers [6] and modulators [7].

The complexity for efficient and accurate ana-
lysis of such discontinuities lies in the necessary
treatment of hybrid eigen modes propagating in more
than one direction and in the necessary description
of fields inside the junction formed between the
different system ports. The finite- element techni-
que proved itself as the most adaptable one for
facing such a situation.

This paper describes a three-dimensional fini-
te-element formulation (FEF) for finding directly
the electric or magnetic field at a given frequency
of excitation inside a general multiaxial finline
discontinuity. Also we describe how this formula-
tion can be used to find the scattering parameters
of a general multiport finline junction.

Due to the non-existence of available results
for the characterisation of multiaxial finline dis-
continuities and owing to the capacity of our FEF
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to treat the uniaxial finline di scclntinuity as
well as the multi axial one, the validiition of our
analysis is performed through the com~parison bet-
ween the results of the characterisation of a fin-
line impedance step problem obtained once by our
FEF and another time by other analysis like that
of [11.

Stationary Functional For the FEF

It may be shown [8] that the functional

FE ‘fjf[(Vx~).(vxi) - ,r kz ~0~] dv (1)
u

(with {2 = C02 PO 6.) is stationary__ to pertur-
bations about the true solutions of E satisfying
Maxwell’s equations within a volume V and confor-
ming to appropriate boundary conditions on a sur-
face S enclosing V. It is provided that E is cons-
trained_to conform the homogeneous Dirichlet con-
dition E x ii = O on perfectly conducting walls and
the homogeneous Neumann condition (VX E) x ii = O

on magnetic walls.

Finite Element Discretisation

The volume V is broken into tetrahedral ele-
ments with ●r and pr supposed constant within
each element but with discontinuity between ele-
ments allowed. In each tetrahedron the electric
field is approximated by a trial function complete
to Mth order in the space co-ordinates, ie

F(r) =Em~m (3) (2)

i==~nram (j) (3)

with m = 1,
{= (i~, J*, “ ?;;

= [( M+l)(M+2)(M+3)/61,
./’4) is the vector volume

co-ordinates and mm (~ ) is an interpolation
polynomial which is constructed in the following
manner

cty~ ~, (t) = Pl(%i) Pj(%a) pk(%~ PI(%J
i4)

m

wit h Pm(z) = ~ (I”lz-i+lli’i (5)

*I

Substituting from equation (2) into equation
(1) yields the following final expression for the
functional for a single element.

FE, = ‘EceWe Ece (6)
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where Ece is a column vector composed of carte-
sian components of the electric field at tetrahe-
dron nodes and We is a square matrix

We = (QK - srk2&T) V, (7)

where 8 is the kronecker delta and Q, T are univer-
sal matrices independent of the tetrahedron geome-
try and can be put in the form

I
?)% acq

Q::=fj — — dS) (8)

a akt a%,

Tm=6

/

G an dQ (9)

Q

The matrix K is a simple function of the
tetrahedron vertex co-ordinates given by

where s, t, w are cartesian axis labelling.

Summing up for all the elements e, partition-
ing the field E into EF, which is a column vec-
tor representing all of the free components of E at
the nodes, and Ep, which represents the prescribed
tangential components that are either zero (on per-
fectly conducting walls) or known, the global func-
tional takes the form

Finally making FE (FE = ~FEe) statio-
nary with respect to all variations of vector EF
leads to the linear matrix equation

WfrE~=-WFpE (12)

which can be solved for the unknowns EF

Application to a Finline Bend Discontinuity

Fig. 2 shows a general bend discontinuity in a
finline. The scattering matrix S for the junction
region with respect to reference planes JI and
J2 is defined as

[:I=C:::l[:l’13)
where bl , b2 are the wave amplitu-
des of ?o’rward a;;’reverse dominant-mode waves in
the two finline ports. It is supposed that the
transverse electric fields Et are precisely pres-
cribed at planes PI and P2 sufficiently far
from the bend so that the Et values can be
extracted from a knowledge of the field components
of the dominant-mode propagating on a uniform fin-
line [11. The field solution is then determined
everywhere between planes P1 and P2 using (12).
Numerical processing of the field amplitudes near

P1 and P2 will determine the ratios RI =
bl/al and R2 = b2/a2. A little algebraic
manipulation of equation (13) gives

(14)

If the dielectric substrate is isotro~ic.
then S12 = s21. Repeating
other two positions for the
lows Sll, S22 and S12
ned.

Case Study

the Drocess ‘fo;
planes ’Pi, P2 al-
to be determi-

In order to evaluate objectively the effecti-
veness of the FEF, it is applied to the solution
of a finline step discontinuity problem as that
shown in Fig. 3. A general finite-element program
NIODULEF[9] has been used to implent numerical
method. Figure 4 shows the finite element model
for the discontinuity problem.

The matrix equation (12) is solved by the
Gauss-Seidel method.

It worths wntionning that the plane P2 is
chosen to be a short circuit one. Figure 5 shows
examples of the results that show the variations
of the different transverse electric field compo-
nents as functions of the coordinates at the shown
positions (xo, Yo, Zo) between planes pl
and P2.

Furthermore, Table 1 gives the values of the
scattering matrix coefficients for the dominant
mode for the case study at 30 GHz. The shown
values agrees well with- these obtained
modal analysis [11.

[1]

[21

[3]

[41

[51

References

M. Helard, J. Citerne, O. Picon and
Hanna. “Theoretical and Experimental

from the

V. Fouad
Investi-

gation of finline disc~ntinuities”, IEEE
Trans. Microwave Theory Tech., Vol. MTT-33,
N“ 10, pp. 994-1003, October 1985.

R. Sorrentino and T. Itoh, “Transverse reso-
nance analysis of finline discontinuities”,
IEEE Trans. Microwave Theory Tech., Vol.
NTT-32, N“ 12, pp. 1633-1638, Dec. 1984.

J.B. Knorr and J.C. Deal, “Scattering coeffi-
cients of an inductive strip in a finline :
theory and experiment”, IEEE Trans. Microwave
Theory Tech., Vol. MTT-33, N“ 10, pp. 1011-
1017, October 1985.

A.M.K, Saad and K. Schunemann, “Design of
finline tapers, transitions and couplers”, in
Proc. of the llth European Microwave Conf.
(Amsterdam, Holland), 1981, pp. 305-308.

H. E1-Hennawy, R. Knochel and K. Schunemann
“Wideband branchlike couplers in finline
technology”, AEU, Vol. 37, N“ 1-2, pp. 40-46,
1983.

790



[61

[71

[8]

[9]

G. Begemann, “An X-band balanced finline
mixer”, IEEE Trans. Microwave Theory Tech.,
Vol. MTT-26, N“ 12, pp. 1007-1011, Dec. 1978.

R. Mehran, J. Ludewig and L. Szabo, “Integra-
ted Ka-band finline mixer/modulators” Elec-
tron. Lett., Vol. 20, PP. 934-935, October
1984.

P.P. Silvester and R.L. Ferrari, “Finite ele-
ments for electrical engineers”, Cambridge
University Press, 1983.

M. Bernadou et al., “Modulef, une biblioth~que
modulaire d’~l~ments finis”, Institut National
de Recherche en Informatiaue et en automati-
que, Versailles, 1985. ‘

TABLE 1
Frequency = 30 GM,

PI (haPa!3 ati.. constant for dominant mode) for WI = 1 mm : 598.3
rad/m

f12 (Propagation constant for dominant nwxie) for W2 = 2 mm : 535.18
red /m

POS1TION Z1 Z2

(mm) (mm)
% R2

1 –lo 10 - 0.728 - j 0.686 0.288 + J 0.958

2 –9 9 - 0.841 + j.540 – 0,702 + j 0.712

3 –11 11 - 0.0421 – j 0.999 0.978 + j 0.207

$
SII = 0.0804 - j 0.261

512 = 0.652 * j 0.706

S22 = 0.253 + j 0.102

a)T–JUNCTION IN FINLINETECHNOLOGY
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FIG.2 REFERENCEPLANESFORTHEBEND
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PI ,P2 reference planes for prescribed fields.

JI .J2 reference planes for the scattering matrix.
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FIG.3 IMPEDANCE STEP DISCONTINUITY IN FINLINE TECHNOLOGY.

The transverse iwescribed field at the Diane z=-10 m is the

fundamental woDagating finline mode derived frofn [1]

The transverse plane at z = 10 m is conducting (short circuit)
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b) BEND IN FINLINETECHNOLOGY

Figurel :3–DFINLINE DISCONTINUITIES
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FIG. 4 MESH DESCRIPTION OF THE FINLINE IMPEDANCE STEP
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FIG.5a FINITE -ELEMENTFIELD RESULTS
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FIG. fjb FINITE-ELEtlENT FIELO RESOLTS
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FIG.5C FINITE-ELEMENT FIELO RESULTS
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