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Abstract

A three dimensional finite -~ element formula-
tion is proposed for finding directly the electric
or magnetic field at a given frequency of excita-
tion inside a general multiaxial finline disconti-
nuity.

It is shown that this formulation can be used
to find the scattering parameters of a general fin-
line bend discontinuity problem. Results are pre-
sented for a case study of a finline step disconti-
nuity problem.

Introduction

Theoretical investigations published so far
for finline discontinuities deal with the step-
discontinuity {1, 21, the inductive strip in finli-
ne [3] and the tapering [4]. In all these cases,
the discontinuity results from the breaking down of
the invariance of the waveguide ports during a spa-
ce translation but the resulting ports of the elec-
tromagnetic system stay always uniaxial. But, to
our knowledge, no attempt has been made to analyze
mutiaxial finline discontinuities like the T junc-
tion and the general bend shown in Fig. 1.

The field theoretical solution of such discon-
tinuities can find 1important applications in the
precise analytical description of many passive cir-
cuit elements realized in finline technology like
stubs, couplers [5], mixers [6] and modulators [7].

The complexity for efficient and accurate ana-
lysis of such discontinuities lies in the necessary
treatment of hybrid eigen modes propagating in more
than one direction and in the necessary description
of fields inside the junction formed between the
different system ports. The finite- element techni-
que proved itself as the most adaptable one for
facing such a situation.

This paper describes a three-dimensional fini-
te-element formulation (FEF) for finding directly
the electric or magnetic field at a given frequency
of excitation inside a general multiaxial finline
discontinuity. Also we describe how this formula-
tion can be used to find the scattering parameters
of a general multiport finline junction.

Due to the non-existence of available results

for the characterisation of multiaxial finline dis-
continuities and owing to the capacity of our FEF
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to treat the uniaxial finline discontinuity as
well as the multiaxial one, the validation of our
analysis is performed through the comparison bet-
ween the results of the characterisation of a fin-
line impedance step problem obtained once by our
FEF[a?d another time by other analysis like that
of [11].

Stationary Functional For the FEF
It may be shown [8] that the functional
FE =[//I{vxE).(vxE) - €0 k& E.E] dV (1)
v

(with k% = w2 Mo €g) 1s stationary to pertur-
bations about the true solutions of £ satisfying
Maxwell's equations within a volume V and confor-
ming to appropriate boundary conditions on a sur-
face S enclosing V. It is provided that E is cons-
trained to conform the homogeneous Dirichlet con-
dition E x n = 0 on perfectly conducting walls and
the homogeneous Neumann condition {vx E) x n = 0
on magnetic walls.

Finite Element Discretisation

The volume V is broken into tetrahedral ele-
ments with €, and up supposed constant within
each element but with discontinuity between ele-
ments allowed. In each tetrahedron the electric
field is approximated by a trial function complete
to Mth order in the space co-ordinates, ie

E(r) = EMam™ (§) (2)
Fo= gl o(F) (3)

with m = 1, ..., N = [(Mr1){M+2)(M+3)/6],

6= (41, %5, 43, $4) is the vector volume
co-ordinates and «™ ({) is an interpolation
polynomial which is constructed in the following
manner

o0 ®) =P &) P& PED PR Y

i (5)
with  Pu(z) = [ Mz-i+1)si

=1
Substituting from equation (2) into equation
(1) yields the following final expression for the
functional for a single element.

Feo = Ece Wo Ege (6)
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where Eco is a column vector composed of carte-
sian components of the electric field at tetrahe-
dron nodes and W is a square matrix

W, = (@K - £,k?6T) V.

where & is the kronecker delta and Q, T are univer-
sal matrices independent of the tetrahedron geome-
try and can be put in the form

(7)

00, 00,

Gua=6 | — —— dQ (8)
a 8%, 3t

Ton =0 | Oy o, dQ (9)

E+

The matrix K dis a simple function of the
tetrahedron vertex co-ordinates given by

L, dY, 3L, d%,

K} = 6 (10)

ar, dry ar, or,

where s, t, w are cartesian axis labelling.

Summing up for all the elements e, partition-
ning the field E into Ef, which is a column vec-
tor representing all of the free components of E at
the nodes, and Ep, which represents the prescribed
tangential components that are either zero (on per-
fectly conducting walls) or known, the global func-
tional takes the form

Fe = 'EoWooEp+ ‘EgWoeEe + EeWeoEp + EWeeEe (11)

Finally making Fp (Ff = 3 Fge) statio-
nary with respect to all variations of vector Ep
leads to the linear matrix equation

WeeEe = = WeE (12)

which can be solved for the unknowns Ef
Application to a Finline Bend Discontinuity
Fig. 2 shows a general bend discontinuity in a
finline. The scattering matrix S for the junction

region with respect to reference planes Ji and
J2 is defined as

b, St Sz a,
= (13)
b Sa1 See Qg
where aj, by, az, bz are the wave amplitu-

des of forward and reverse dominant-mode waves in
the two finline ports. It 1is supposed that the
transverse electric fields Ey are precisely pres-
cribed at planes Py; and Pz sufficiently far
from the bend so that the Ey values can be
extracted from a knowledge of the field components
of the dominant-mode propagating on a uniform fin-
Tine [11. The field solution is then determined
everywhere between planes P; and P2 using (12).
Numerical processing of the field amplitudes near
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P; and P2 will determine the ratios Rp =
bj/a; and Rp = bp/ap. A Tlittle algebraic
manipulation of equation (13) gives

S5y = (Rf Si1) (92-322)

If the dielectric substrate 1is isotropic,
then S12 = Sp1. Repeating the process for
other two positions for the planes P, P2 al-
1035 S11, Sp2 and Si2 to be  determi-
ned.

(14)

Case Study

In order to evaluate objectively the effecti-
veness of the FEF, it is applied to the solution
of a finline step discontinuity problem as that
shown in Fig. 3. A general finite-element program
MODULEF [9] has been used to implent numerical
method. Figure 4 shows the finite element model
for the discontinuity problem.

The matrix equation (12)
Gauss~Seidel method.

is solved by the

It worths mentionning that the plane Py is
chosen to be a short circuit one. Figure 5 shows
examples of the results that show the variations
of the different transverse electric field compo-
nents as functions of the coordinates at the shown
P1

positions between

and Pp.

(x0» Yo» 2o} planes

Furthermore, Table 1 gives the values of the
scattering matrix coefficients for the dominant
mode for the case study at 30 GHz. The shown
values agrees well with these obtained from the
modal analysis [1].
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TABLE 1
Frequency = 30 GHz

B1 (Propagation constant for dominant mode) for Wi = 1 mm : 598.3
rad/m

ﬁz (Propagation constant for dominant mode) for Wy = 2 mm : 535.18
rad/m

POSITION Zy Z R, R,
(mm) (mm)
1 —~10 10 - 0.728 - § 0.686| 0.288 + J 0.958
2 —9 9 - 0.841 + 3,540 - 0,702 + j 0.712

- 0.0421 - j 0.999 0.978 + j 0.207

S11 = 0.0804 - § 0.261
S12 = 0.652 + j 0.706

Sz = 0.253 + j 0.102

N

a) T-JUNCTION IN FINLINE TECHNOLOGY
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FIG. 2 REFERENCE PLANES FOR THE BEND

Py .P, référence planes for prescribed fields.
1 "2

J1 .J2 référence planes for the scattering matrix.
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FIG.3  IMPEDANCE STEP DISCONTINUITY IN FINLINE TECHNOLOGY .

The transverse prescribed field at the plane z=-10 mn is the
fundamental propagating finline mode derived from [1]

The transverse plane at z = 10 mm is conducting (short circuit)
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b) BEND IN FINLINE TECHNOLOGY

Figure 1 : 3—D FINLINE DISCONTINUITIES
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